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Abstract—In this paper, cell nuclei attributed relational
graphs are extensively studied and comparatively analyzed
for effective knowledge description and classification in H&E
stained whole slide images of gastric cancer. This includes
design and implementation of multiple graph variations with
diverse tissue component characteristics and architectural pro-
perties to obtain enhanced image representations, followed by
hierarchical ensemble learning and classification. A detailed
comparative analysis of the proposed graph-based methods,
also with the established low-level, object-level and high-level
image descriptions is performed, that further leads to a hybrid
approach combining salient visual information. Quantitative
evaluation of investigated methods suggests the suitability of
particular graph variants for automatic classification using
H&E stained histopathological gastric cancer whole slide ima-
ges based on HER2 immunohistochemistry.

Keywords-Cell nuclei attributed relational graphs, H&E
stain, gastric cancer, knowledge description, automatic clas-
sification, biomedical image analysis, digital histopathology.

I. INTRODUCTION

Graph is a powerful structure widely studied for image
analysis in digital histopathology [1], as it can suitably des-
cribe significant visual characteristics of histological images
by incorporating the knowledge of spatial arrangements,
structural properties and neighborhood relationships between
tissue components. The cell nuclei attributed relational graph
(cell nuclei ARG) is a novel image representation and feature
extraction method, analyzed for automatic classification in
haematoxylin and eosin (H&E) stained whole slide images
(WSI) of gastric carcinoma, based on HER2 immunohis-
tochemistry (IHC) [2]. In principle, the cell nuclei ARG
for a magnified tissue image is constructed by computing
and assigning numerical attributes to its vertices (cell nu-
clei) and edges (links with neighbors), to describe their
individual component characteristics, spatial interactions and
underlying tissue architecture. The basic cell nuclei ARG
method has revealed favorable initial outcome compared to
most of the frequently applied histopathological feature ex-
traction approaches, namely, low-level (pixel-based) features
including texture, color and intensity, and high-level (ar-
chitectural) features including Voronoi diagrams and Delau-
nay triangulation, followed by AdaBoost classification [2].
Therefore, the capabilities of cell nuclei ARG require to
be further investigated for potential enhancements. This
paper contributes towards an extension of the preliminary
algorithm by systematic formulation and empirical analysis

of multiple variations in the cell nuclei ARG. The proposed
methods are quantitatively analyzed to examine their relative
discriminative power, along with comparison with state-
of-the-art feature extraction in digital histopathology [3],
namely, pixel-based, object-level and architectural methods,
using hierarchical random forests ensemble learning and
classification. The experimental results establish the ability
of proposed graph-based methods to obtain meaningful
knowledge description and automatic categorization in H&E
stained gastric cancer WSI.

In literature, a graph-based method called cell graph [4],
[5] is explored primarily for H&E stained brain cancer and
breast tissue images, and described more suitable than proxi-
mity graphs [6] especially due to less geometrical constraints
for cancer tissue modeling. In our work, the proposed cell
nuclei ARG and its variants have also been conceptualized
with fewer linking constraints. However, the cell nuclei
ARG is constructed at a higher magnification by computing
visual characteristics of individual cell nuclei, their neig-
hborhoods and relational information between neighbors.
The edge linking rules and global graph features are also
distinct from cell graphs. Attributed relational graphs have
been recently explored for image analysis tasks in digital
histopathology. For instance, attributed relational regional
adjacency graphs have shown promising results for content-
based image retrieval in breast cancer biopsies [7]. Attribute
relational graphs are also applied for segmenting cell nuclei
using a model-based approach in fluorescence microscopy
images of hepatocellular carcinoma [8]. Attributed minimum
spanning trees have been explored [9] for representation in
Feulgen stained soft tissue tumors. Related to this work, a
multiresolution approach is developed [10] to enhance cell
nuclei segmentation for an accurate graph construction, and
includes a supervised cell nuclei classification utilized in
graph design variations in gastric cancer WSI.

The paper is organized as follows. Section II describes
the developed methods and Section III discusses the experi-
mental results. Section IV presents the conclusion and future
research directions of this work.

II. METHODS

Figure 1 illustrates the schematic overview of the propo-
sed method, explained in detail in the following sections.
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Figure 1: Schematic overview

A. Gastric Carcinoma WSI Datasets

HER2 immunohistochemical staining has been recently
introduced as a biomarker for gastric cancer, along with
a 10% cut-off rule [11] to study inter-and intra-observer
variability among pathologists. H&E stain is routinely used
due to clear staining of cell nuclei, easy application and
lower preparation costs [12], thus, it has been preferably
analyzed in this work. The main objective is to implement
advanced methods for appropriate knowledge description
and categorization in the H&E stain, which is more difficult
to visually discern compared to the HER2 IHC stain.

The experimental data consists of 11 whole slide images
in HER2 and H&E stain, acquired from surgical sections
of distinct patients of gastric adenocarcinoma [11], [13].
The HER2 IHC stained WSI contain annotations by ten
pathologists for HER2 positive tumor (HER2+) and HER2
negative tumor (HER2-) regions, where HER2+ tumor areas
follow the 10% cut-off rule and represent higher malignancy,
and HER2- tumor areas are morphologically identified as
tumor and denote lower malignancy. Corresponding H&E
stained sections are scanned by 3D Histech Panoramic 250
scanner with resolution 0.22 µm/pixel (at 40× objective
magnification) with quadratic pixels.

B. Image Pre-analysis

Image pre-analysis includes a semi-automatic registration
followed by a transformation of pathologists’ annotation
originally created in HER2 WSI to the H&E WSI [2]. The
H&E WSI are tessellated at 40× objective magnification,
with each image tile of size 1024 × 1024 pixels, to provide
large fields of view containing rich context information.
Non-overlapping image tiles are selected from areas inside
polygon annotations of HER2+ tumor and HER2- tumor
considering regions of agreement of most pathologists. Non-
tumor category comprises of regions lying outside both types
of polygon annotations. This is followed by cell nuclei
segmentation [14] and optional cell nuclei classification [10]
(applied to a subset of the cell nuclei ARG variants). Cell
nuclei classification has been modified in class definitions of
cell nuclei segments as one of the seven categories, namely,
epithelial cells, leukocytes, fibrocytes, conglomerates, frag-
ments, other cells and artefacs, along with random forests
machine learning, leading to an overall superior multi-class
accuracy (ca. 65%), with the diagnostically relevant cell
nuclei classes showing relatively high prediction rates.

C. Cell Nuclei ARG Construction

An attributed relational graph G(V,E,A,B) consists of
vertices V , edges E and their associated attributes A and
B respectively [7]. The attributes of a vertex vi ∈ V are
represented by vector ai = [a

(p)
i ], (p = 1, 2, 3, ..., P,ai ∈

A), and attributes of edge eij ∈ E between vi, vj ∈ V by
vector bij = [b

(q)
ij ], (q = 1, 2, 3, ..., Q,bij ∈ B). The cell

nuclei ARG is constructed by considering the cell nuclei
segments as graph vertices [2]. Vertex vj is included in the
neighborhood Ni,j of vertex vi if and only if,

de(i, j) ≤ r (1)
where de(i, j) denotes the Euclidean distance between the
centroids of vi and vj , and r is called maximum spanning
edge length. Attribute vectors are assigned to each vertex
and edge [2], where each ai includes the morphological,
contour intensity and neighborhood-based properties of the
corresponding cell nucleus, and each bij represents the
Euclidean lengths, orientations and absolute vertex attribute
differences between neighboring vertices.

D. Proposed Variants of the Cell Nuclei ARG

The two design variables are linking rule to determine r
and construction method based on vertex information.

1) Linking rule to determine r: The two linking rules to
determine maximum spanning edge length r are as follows.
Fixed r(rF ): Here, r is empirically predetermined for all the
images irrespective of malignancy type by visual inspection
of graph structures to represent unique neighborhood and
architectural characteristics of the three malignancy groups.
It is visually and quantitatively observed that an adequately
estimated value of rF can lead to powerful cell nuclei ARG
descriptions of the gastric cancer tissue.
Adaptive r(rA): A dynamic value of r is computed for
each image region before graph construction, depending on
its cell nuclei density. An imaginary regular grid consisting
of equal sized rectangular grid cells is considered, assuming
that each grid cell consists of a cell nuclei centroid at its
center. r is the maximum distance between the given cell
nuclei centroid and its 8-neighbors. Let the length of the
image tile be l, breadth b, number of grid cells in each
row Nl and in each column Nb (depicted in Figure 2).

Figure 2: Regular grid assumption to determine rA
The maximum distance dm of a grid cell center with its
8-neighbors is given by

dm =

√(
l

Nl

)2

+

(
b

Nb

)2

(2)



For a square image tile, l = b and Nl = Nb = N , therefore,

dm =

√
2l2

N2
=

√
2l√
Nv

(3)

where, N2 is the total number of grid cells. Also, according
to the assumption, each grid cell consists of a cell nuclei
centroid, so N2 is the total number of vertices Nv in the
cell nuclei ARG. To obtain the value of rA for an image
tile, dm is rounded off to the nearest higher integer. The
main advantage of this approach is the elimination of the
prerequisite of empirically fixing r as it is automatically
calculated for each image during graph construction. This
calculation of a dynamic rA is more flexible and increases
the probability that a cell nuclei segment is connected to
its nearest neighbors irrespective of their actual distance in
the tissue. However, for the computation of rA, a uniform
distribution assumption in the ideal case is not completely
indicative of the heterogeneous tumor tissue in the real case.
It should be specified that the assumption does not deter-
mine actual edge lengths but only puts a threshold on the
connectivity between tissue components, and such a linking
approach can result in multiple connected components in
the cell nuclei ARG representing true spatial arrangements.
Nevertheless, it will be interesting to observe the behavior
of dynamically and automatically calculated rA without
requirement of empirical determination, and compare the
performance of the two edge linking approaches.

On comparing the computational complexities of the two
linking rules, fixed r method has lower costs as it does not
require r calculation for each image. On the other hand,
accuracy of the assumption of r affects the subsequent
classification performance, hence, should be carefully de-
termined using experimental evidence, which increases the
overhead related to fixed r method.

2) Cell nuclei ARG construction based on vertex informa-
tion: Four construction methods based on the information
in the graph vertices have been explored as follows.
Generic cell nuclei ARG (gARG): As the name suggests,
gARG is constructed using all the cell nuclei segments
comprising the image as its vertices, irrespective of their
individual identities.
Nuclei-specific cell nuclei ARG (nsARG): It is constructed
by considering all the cell nuclei of the same class. The
class for each cell nuclei segment is automatically computed
using the cell nuclei classification step of image pre-analysis.
Each nsARG represents the spatial arrangements of one
of the four cell nuclei classes, namely, Epithelial Cells,
Leukocytes, Fibrocytes and Conglomerates. Other classes
are not considered due to insignificant occurrence and (or)
impact. Thus, a maximum of four nsARGs are generated for
each region of interest. Their vertex attributes do not include
morphological and contour intensity based measures because
these are utilized during cell nuclei classification. Hence,
the construction emphasizes purely on the neighborhood

interactions among cell nuclei of the same type in the tissue.
Nuclei-composite cell nuclei ARG (ncARG): In this con-
struction, class for each cell nuclei segment is automatically
estimated as one of the classes [10] using cell nuclei clas-
sification, however, the graph is constructed by considering
all the cell nuclei with their identities leading to a single
ncARG per image. Its vertex attributes do not include
some cell nuclei features due to the reason described for
nsARG, but an additional vertex attribute denoting the class
of each vertex is introduced. The difference of ncARG from
nsARG and gARG constructions is the inclusion of all cell
nuclei in the same graph with their identities, emphasizing
their inter-class relationships in the tissue neighborhood.
Nuclei-composite cell nuclei ARG with additional vertex
attributes (ncARGv+): It is constructed similar to ncARG,
however, it includes morphological and contour intensity
based vertex attributes in addition to the class information
of each vertex. This can be seen as repetitive use of vertex
attributes, first during cell nuclei classification and then
graph construction, though knowledge of existing graphs
may be enriched by such reuse.

Among the four construction methods, gARG has the
lowest space and time requirements due to its simplistic and
straightforward implementation. ncARG and ncARGv+

have intermediate requirements due to additional cell nuclei
classification. nsARG is the most computationally intensive
due to multiple graphs constructed per image in addition to
the cell nuclei classification, and requires additional space
when the corresponding graphs need to be explicitly saved.

(a) (b) (c)

(d) (e) (f)

Figure 3: Cell nuclei ARG variants for an example image
(a) gARG[rF ] (b) gARG[rA] (c) nsARG[rF ] {Epithelial
Cells} (d) nsARG[rA] {Leukocytes} (e) ncARG[rF ] (f)
ncARG[rA] (corresponding ncARG and ncARGv+ will
have same appearance but different vertex information).

Based on combinations of the two design variables, eight
cell nuclei ARG variants are developed, representing a range
of the contained knowledge of corresponding tissue regions.
gARG[rF ] is the most elementary and intuitive type and



was also initially explored in [2]. More proposed variants
are gARG[rA], nsARG[rF ], nsARG[rA], ncARG[rF ],
ncARG[rA], ncARGv+[rF ] and ncARGv+[rA]. The graph
variants for an example image are depicted in Figure 3.

E. Global Graph Features
These are the moment-based and size-based features

computed for each cell nuclei ARG [2]. Moment-based
features of the vertex and edge attributes are calculated as
their mean, variance, skewness and kurtosis, and minimum
and maximum values are also included. Size-based features
include number of vertices, number of edges, number of con-
nected components, cyclomatic number, graph density, graph
irregularity and number of triangles. A feature vector of 332
global graph features is extracted for each image tile using
the gARG construction [2]. For the nsARG construction, a
maximum of four graphs and 188 features per graph are
generated, yielding a total of 752 global graph features
for each image. The ncARG and ncARGv+ constructions
consist of seven additional global graph features related to
vertex identities as the total instances of each type of cell
nuclei, hence, a set of 195 and 339 global graph features are
extracted from the corresponding graphs respectively.

F. Random Forests Learning and Classification
Random forests is an ensemble learning algorithm in-

volving the training of multiple decision trees and the
classification result is the mode of predictions of consti-
tuent trees [15]. Random forest has been selected for this
work because of high prediction accuracy among traditional
machine learning methods, also showing success in digital
pathology problems [16], [17].

The learning phase of random forests for our classification
task requires prior selection of two experimental parameters,
namely, number of decision trees Nt and number of features
m for best split. These are estimated by measuring the out-
of-bag error for each observation via bootstrap aggrega-
tion [18], [19]. A range of values of Nt and m are considered
as Nt ∈ {1, 2, ...1500} and m ∈ {log2M,

√
M,M}, where

M is the total number of extracted features, and suitable
values are selected at which the out-of-bag error beco-
mes steady and low. Using random forests, a hierarchical
classification strategy is explored. It is a two-stage binary
classification, where the first stage discriminates between
non-tumor and tumors, followed by HER2+ tumor or HER2-
tumor prediction in the second stage.

III. RESULTS AND DISCUSSION

A total of 795 image tiles have been generated from
labeled WSI data, with nearly equal distribution in each
of the three malignancy types. Quantitative evaluation is
performed using multiple rounds of two cross validation
methods, namely, k-fold stratified shuffled split and leave-
a-patient-out [2]. A comparative evaluation scheme is con-
sidered for experimental analysis, including state-of-the-

art feature extraction methods in digital histopathology
and the proposed eight cell nuclei ARG variants. State-
of-the-art includes low-level (pixel-based) features using
a combination of texture and color selected from GLCM
statistics [20], Gabor filter-banks [21], LBP histograms [22],
Varma-Zisserman textons [23] and RGB histograms after
correlation analysis [2]. It also includes object-level features
using the morphological and contour intensity information
of cell nuclei [24], [10] without any neighborhood properties
or global architecture. High-level state-of-the-art methods
include global features from Voronoi diagrams and Delaunay
triangulation [1] of the tissue images. Finally, a hybrid set
of low-level and high-level features of the most favorable
cell nuclei ARG variant are also quantitatively analyzed to
represent comprehensive knowledge in the gastric cancer
WSI. The overall classification performance for the twelve
image description methods in comparative evaluation is
summarized in Figure 4, showing the averaged per-class and
balanced classification accuracy (BCA) [25] and respective
standard deviations.

Figure 4: Experimental results: per-class and balanced clas-
sification accuracy of the comparatively analyzed methods.

On comparing the class-wise performance of the random
forests hierarchical classification, it is evident that in the
first stage, higher-level tumors and non-tumor classes attain
superior prediction rates due to distinct visual appearances,
however, in the second stage, the two tumor subclasses,
namely, HER2+ tumor and HER2- tumor are more difficult
to discern in the H&E stain. HER2+ tumor has intermediate
recognition rate and discrimination from the other tumor
type. The most complex class is HER2- tumor with highest
prediction error and confusion with HER2+ tumor. This is
because HER2- tumor has less distinct visual properties in
the H&E stain due to a lower malignancy level and also
showed fainter IHC response in the HER2 WSI.

The relative performance between the investigated state-
of-the-art methods and proposed cell nuclei ARG variants
is elaborated as follows. In the first stage of hierarchical
classification, low-level features are superior to proposed
graph-based methods for the non-tumor class, but a better



description of tumors is found to be achieved by the cell
nuclei ARG variants, and in the second stage, a few graph
variants outperform the pixel-based features for HER2+
tumor. Moreover, high-level state-of-the-art features using
Voronoi diagrams and Delaunay triangulation do not perform
satisfactorily in the first stage and only show good detection
for HER2+ tumor in the second stage but at the cost of
HER2- tumor. Similarly, object-based features are not as
effective as the information extracted from the designed
graphs, seen mainly in both the tumor classes of first stage
and HER2+ tumor in second stage, with an overall lower de-
tection rate. This observation emphasizes the significance of
neighborhood properties, spatial arrangements and architec-
tural information in addition to individual tissue components
for knowledge description in histopathological images.

For comparison between cell nuclei ARG variants, classi-
fication performance with respect to the two design variables
is analyzed. On investigating the linking rules, the two coun-
terparts show comparable performance with small overall
variations, i.e. increase in gARG and nsARG but decline
in ncARG and ncARGv+ with the adaptive r approach.
However, fixed r bears the overhead of empirical selection
depending on nature of datasets, so adaptive r can be more
conveniently computed to generate descriptive cell nuclei
ARGs without significant deviation in performance. Among
the four construction methods, ncARG is most promising
with close similarity to gARG, that outperform ncARGv+

and nsARG methods in order. Clearly, nsARG is unsuita-
ble with consistently lower detection rates specifically in the
second stage of hierarchical classification. This is mainly due
to the inclusion of selective interactions of specific cell types
that may not be as meaningful as their global interactions
in the tissue. Also, the omitted vertex attributes deplete the
graph of useful information about individual cells and affects
the decision-making process. Furthermore, ncARGv+ does
not depict any significant improvement over ncARG by
reuse of vertex attributes with cell nuclei identities. On
comparing gARG and ncARG, it can be argued that these
graphs are two representations of the same information,
with former containing ‘raw’ moment-based features of
vertex attributes, and the latter with ‘processed’ features after
these attributes facilitate cell nuclei classification. However,
ncARG is more adequate because gARG generates a larger
number (nearly 1.7 times) of global graph features compared
to ncARG, so the final classifier decision is more prone to
error due to higher dimensionality [26]. In contrast, if vertex
attributes are first applied to predict cell types, and measures
reflecting tissue composition (number of each cell type) are
then added to global graph features, a cleaner feature vector
is obtained. The ncARG method has further potential of
enhancement with improvements in cell nuclei segmentation
and classification, however, demands higher computational
requirements than gARG due to cell nuclei classification.

Lastly, the hybrid approach for combination of knowledge

using low-level state-of-the-art and high-level handcrafted
features exhibits the highest prediction performance (average
BCA=73.78%) in both classification stages, which suggests
that the fusion of complimentary pixel-based and architec-
tural information can lead to further enhancement in the
tissue image descriptions, also observed in [2]. This is
followed by the low-level features (average BCA=71.83%),
and high-level handcrafted graph-based features using
gARG[rA] (average BCA=68.58%), ncARGv+[rF ](average
BCA=68.36%) and ncARG[rF ] (average BCA=68.26%)
variants of the cell nuclei ARG. Hence, the proposed novel
cell nuclei ARG graph-based method compares favorably to
most state-of-the-art feature extraction approaches leading to
effective description and classification in H&E gastric cancer
WSI based on HER2 IHC.

IV. CONCLUSION

In this paper, a set of solutions using high-level graph-
based methods is proposed for modeling and quantifying
meaningful information in H&E stained gastric cancer WSI.
The cell nuclei ARG method is thoroughly explored, where
eight graph variants are implemented and comparatively
analyzed, also with widely known state-of-the-art feature
extraction approaches. The experimental results using hier-
archical random forests classification depict that some of
the proposed graphs are superior than other variants, and
also comparable to state-of-the-art methods. Specifically, the
ncARG construction with fixed or adaptive r has desirable
properties and outcome in gastric cancer classification based
on HER2 IHC. Furthermore, it can be established that the in-
formation extracted from cell nuclei ARG variants including
individual cells, neighborhood relationships and global tissue
architecture can enhance the knowledge obtained purely
at the object-level, and can further enrich the pixel-based
texture and color measures of tissue images. This work can
contribute towards assisting pathologists in computer-aided
diagnosis tasks, and reducing manual efforts and observer
variability in digital histopathology.

An advantage of the discussed handcrafted descriptors is
their enhanced scope of interpretation in histopathological
images with special characteristics such as complex appea-
rances and high resolutions. However, certain errors may
be introduced during image pre-analysis in cell nuclei seg-
mentation and classification prior to the graph construction
and affect the classifier decision. In contrast, deep learning
methods process raw images directly and do not necessary
require image pre-analysis. We have performed a compara-
tive study between deep convolutional neural networks and
low-level features with traditional machine learning [27] for
the described cancer classification problem in H&E stained
gastric cancer WSI. Similarly, a comparative study of the
proposed high-level graph-based handcrafted methods and
deep learning will be an exciting research prospect. Exten-
sion of the current gastric carcinoma reference WSI dataset



with more number of patients will increase the robustness
of the proposed system. Exploring the repeatability of our
methods using open source benchmark datasets will also be
an interesting future direction.
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